Preparation and Characterization of Individual and Multi-drug Loaded Physically Entrapped Polymeric Micelles.

نویسندگان

  • Deepa A Rao
  • Duc X Nguyen
  • Gyan P Mishra
  • Bhuvana Shyam Doddapaneni
  • Adam W G Alani
چکیده

Amphiphilic block copolymers like polyethyleneglycol-block-polylactic acid (PEG-b-PLA) can self-assemble into micelles above their critical micellar concentration forming hydrophobic cores surrounded by hydrophilic shells in aqueous environments. The core of these micelles can be utilized to load hydrophobic, poorly water soluble drugs like docetaxel (DTX) and everolimus (EVR). Systematic characterization of the micelle structure and drug loading capabilities are important before in vitro and in vivo studies can be conducted. The goal of the protocol described herein is to provide the necessary characterization steps to achieve standardized micellar products. DTX and EVR have intrinsic solubilities of 1.9 and 9.6 µg/ml respectively Preparation of these micelles can be achieved through solvent casting which increases the aqueous solubility of DTX and EVR to 1.86 and 1.85 mg/ml, respectively. Drug stability in micelles evaluated at room temperature over 48 hr indicates that 97% or more of the drugs are retained in solution. Micelle size was assessed using dynamic light scattering and indicated that the size of these micelles was below 50 nm and depended on the molecular weight of the polymer. Drug release from the micelles was assessed using dialysis under sink conditions at pH 7.4 at 37 (o)C over 48 hr. Curve fitting results indicate that drug release is driven by a first order process indicating that it is diffusion driven.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone

Objective(s): Micelles have been studied as nanoparticulate drug delivery systems for improving the topical ocular delivery of hydrophobic drugs. The objective of this study was to develop and characterize dexamethasone-loaded polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) micelles to improve patient compliance and enhance the ocular bioavailability of poorly water-soluble ...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization

Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2015